Jurassic vertebrate bromalites of the western United States
in the context of the global record

Adrian P. HUNT¹, Spencer G. LUCAS²

Key words: bromalite, coprolite, consumulite, evisceralite, Jurassic, Morrison Formation, Sundance Formation, western USA.

Abstract. The bromalite record of the western United States is quite limited, especially in contrast to the Triassic and Cretaceous records of the same region. Indeed, there are only a handful of well documented vertebrate bromalites from the Jurassic strata of the western USA, including: (1) coprolites from the non-marine Early Jurassic Glen Canyon Group; (2) consumulites and evisceralites from the Middle Jurassic Todilto and Sundance formations; and (3) consumulites, putative coprolites and pseudobromalites from the nonmarine Upper Jurassic Morrison Formation. Early Jurassic red beds are notably less fossiliferous than those of the Triassic (e.g., contrast the fossil record of the Chinle and Glen Canyon groups). The Middle Jurassic of the region includes several eolianites and sabkha-like deposits representing environments that preserve few bromalites. The Upper Jurassic Morrison Formation contains abundant vertebrate body fossils and many tracks but very few bromalites in contrast to many broadly similar fluvial deposits of Triassic and Cretaceous age in the same region. The global bromalite record also appears to be depauperate in the Jurassic, with a few exceptions such as marine shales and lithographic limestones in Europe (e.g., Lower Jurassic of England, Upper Jurassic Solnhofen Limestone of Bavaria). This relative lack of a global Jurassic bromalite record may in part be more a result of a lack of collection and study. However, the relative lack of nonmarine bromalites is clearly influenced by high sea levels in the Early Jurassic, a paucity of Middle Jurassic nonmarine vertebrate-bearing units and a lack, or lack of recognition of, bromalites in major Upper Jurassic nonmarine vertebrate faunas (e.g., China, Tanzania, Portugal, etc.). In the Western United States there is clearly a need for more detailed examination of known specimens (e.g., putative Morrison coprolites) and a focus on collecting more examples.

INTRODUCTION

Vertebrate bromalites, notably coprolites, are common in the upper Paleozoic/Triassic and Cretaceous/Paleogene of the western United States (e.g., Hunt, Lucas, 2007, 2013; Suazo et al., 2012; Hunt et al., 2013). However, there are relatively few reports from Jurassic strata. The purpose of this paper is to briefly review the Jurassic bromalites of western North America (Fig. 1) and to compare them with the global Jurassic bromalite record.

JURASSIC BROMALITES
IN THE WESTERN UNITED STATES

EARLY JURASSIC

Moenave Formation

Whitmore Point, Arizona. The type locality of the Upper Triassic–Lower Jurassic Whitmore Point Member (Rhaetian–Hettangian) of the Moenave Formation is, at Whitmore Point, a south-facing promontory of the Vermillion Cliffs in

1 Flying Heritage Collection, 3407 109thSW, Everett, WA 98204; e-mail: adrianhu@flyingheritage.com
2 New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, NM 87104; e-mail: spencer.lucas@state.nm.us
Mohave County, Arizona, where the unit comprises 22 m of fish- and coprolite-bearing shales, siltstones, sandstones, and minor limestones (Wilson, 1967; Tanner, Lucas, 2010; Lucas et al., 2011). At nearby Potter Canyon the unit consists of shale, mudstone and siltstone beds that locally contain conchostracans, fish scales and coprolites (Lucas et al., 2011).

St. George, Utah. In the Whitmore Point Member at St. George, Utah, coprolites occur with the rich fossil assemblage that is associated with extensive dinosaur trackways (e.g., Milner, Lockley, 2006; Williams et al., 2006). However, these are now known to occur within the Rhaetian portion of the Whitmore Point Member (Lucas et al., 2011), so we regard them as of latest Triassic, not Jurassic age.

LATE JURASSIC

Sundance Formation

Central Wyoming. The Redwater Shale Member of the Sundance Formation (Oxfordian) yields four taxa of marine reptiles (Massare et al., 2013). Two thirds of the specimens represent the ichthyosaur *Ophthalmosaurus natans*, and the others can be assigned to two cryptocleidoid plesiosaurs (*Tatenectes lariamensis, Pantosaurus striatus*) and one pliosauromorph (*Megalneusaurus rex*) (Massare et al., 2013).
Jurassic vertebrate bromalites of the western United States in the context of the global record

Consumulites are known for each of these taxa (Massare et al., 2013). These consumulites consist primarily of belemnoids with coleoid hooklets, but they also include a cardio-cerid ammonite jaw (cryptocleidoid plesiosaur), indeterminate fish bones (*Megalneusaurus*, *Pantosaurus*) and embryonic centra of *Ophthalmosaurus* (cryptocleidoid plesiosaur) (Massare, 1987; Massare, Young, 2005; Wahl et al., 2007; O’Keefe et al., 2009; Wahl, 2012).

Morrison Formation

San Rafael Swell, Utah. There are three reports of dinosaur bromalites from the Brushy Basin Member of the Morrison Formation in Emery County, Utah. Stokes (1964) collected a large ovoid specimen that he interpreted as a gastrolite (fossilized stomach contents) of a sauropod. This is a calcareous, matrix-supported conglomerate containing plant and bone specimens, which was subsequently demonstrated to be a part of a laterally continuous bed about 30 m in extent (Sander et al., 2010, figs 14.5–14.6). Thus, Stoke’s specimen is clearly part of a sedimentary lens and is not a bromalite (Ash, 1993; Sander et al., 2010, 2011).

Stone et al. (2000), in an abstract, presented a preliminary description of a 3-m-long object that is about 46 cm wide and 10 cm thick. The putative coprolite consists of a main mass that is tapered at both ends and a 1.52-m-long section of small isolated coprolites that are interpreted to represent defecation while walking. The specimen includes angular bone fragments that constitute about 50% of an apatitic matrix. The putative coprolite is attributed to *Allosaurus* based on its size and the inclusion of a tooth fragment attributed to this taxon. Stone et al. (2000) also mention a second putative coprolite and pieces of similar lithology from two other locations.

Chin and Bishop (2004, 2007) described isolated pieces of another putative theropod coprolite (Fig. 3) from a locality about 4 km from the area that yielded the specimens described by Stone et al. (2000). They interpreted these samples of bone-bearing conglomerate as representing theropod coprolites on the basis of: (1) lack of sorting and a paucity of sedimentary clasts argue against a hydrodynamic accumula-
tion or concentration due to feeding; and (2) the matrix contains phosphate, although not as much as in other theropod coprolites.

Although the material described by Stone et al. (2000) and Chin and Bishop (2007) could represent bromalites, we think there is need for further detailed description of complete *in situ* specimens. Several factors do not seem consistent with a bromalite origin, including: (1) large size of masses (meters in length); (2) high percentage of angular bone fragments; and (3) lower phosphate content in the matrix than in other coprolites. Based on the size it is possible that these specimens represent latrinites (accumulations of coprolites *sensu* Hunt and Lucas, 2012). If this is the case then size would not be such an issue and they could also represent another large carnivore such as a crocodilian.

Eastern Utah. A probable coprolite containing bone fragments and fish vertebrae was collected by a volunteer from the Museum of Western Colorado (J. Foster, pers. commun., 2014). This specimen, which may pertain to a crocodile, is probably from the Yellow Cat area but it is unclear if it derives from the Morrison Formation or the Lower Cretaceous Cedar Mountain Formation (J. Foster, pers. commun., 2014).

Mygatt-Moore Quarry, Colorado. Chin and Kirkland (1998) described plant-bearing nodules from the Brushy Basin Member as dinosaur coprolites. They studied six specimens with compositions varying from siliceous to calcareous. They all contain fragmented plant material, although the quantity and quality varies considerably (Chin, Kirkland, 1998). Indeed, plant material is disseminated throughout the matrix of the quarry, but it is particularly concentrated in the bone-bearing interval (B. Britt, J. Foster, pers. commun., 2014).

We think that it is most parsimonious to consider these putative coprolites as concretions that formed around concentrations of plant debris (Sander et al., 2010; B. Britt, J. Foster, pers. commun., 2014) based on the following lines of evidence: (1) irregularity in shape from round to irregular (Chin, Kirkland, 1998); (2) variation in size from 5 to 15 cm in diameter (Chin, Kirkland, 1998); (3) preservation and taxonomy of the plant material in the putative coprolites does not differ from that in the quarry matrix (B. Britt, pers. commun., 2014); (4) some of the plant material in the putative coprolites is well preserved and unetched and it includes intact fern sporangia retaining spores and attached to fronds, cycad fronds and petioles and seeds with fleshy outer layers, none of which could reasonably be expected to survive passage through a digestive tract (Tidwell in Sander et al., 2010; B. Britt, pers. commun., 2014); and (5) the putative coprolites include volcanic ash, which would not be expected to be voluntarily ingested (Sander et al., 2010).

Howe Quarry, Wyoming. The Howe Quarry is located near Shell and yielded significant dinosaur skeletons for the American Museum of Natural History in the 1930s, and later in the 1990s, for other institutions. Several authors have reported plant material associated with sauropod skeletons that they interpreted to represent consumulites (Brown, 1935; Bird, 1985; Michelis, 2004).
Pseudocoprolites, Utah and Colorado. Many of the “coprolites” for sale in rock shops in the United States are not coprolites, but instead are agatized concretions from the Morrison Formation, principally from Utah and Colorado, notably southwest Colorado, the San Rafael Swell and Moab in southeastern Utah (e.g., Speedlove, 1979; Dalrymple, 2014; Fig. 1). “There is an area of southern Utah where the canyons and valleys are so prolific with the coprolite that it used to be mined with a front end loader and hauled by dump truck to rock shops around the country” (Dalrymple, 2014, p. 176). However, these specimens are clearly inorganic concretions (e.g., Dalrymple, 2014, p. 174, 178, 179), some of which may represent silicified calcrete nodules (Chin, Kirkland, 1998).

GLOBAL RECORD OF JURASSIC BROMALITES

COPROLITES

Buckland (1829) first mentioned coprolites from the Jurassic. He referred these specimens from the Lower Liassic (Hettangian–Lower Pliensbachian) of southwestern England to ichthyosaurs. Subsequently, Buckland described more specimens in detail, and several authors have published on related specimens during the last decade (Buckland, 1835, 1836; Hunt et al., 2007, 2012a; Duffin, 2010).

However, in general, Jurassic coprolites have not been well studied (Hunt et al., 2012). Other Early Jurassic units in Europe have yield relatively few coprolites, for example the Posidonienschiefer of Germany (e.g., Hauff, 1921). The Early Jurassic portion of the Newark Supergroup in eastern North America contains coprolites but they are little studied (e.g., Hitchcock, 1844; Dana, 1845; Gilfillian, Olsen, 2000).

The Oxford Clay of England contains abundant coprolites (Martill, 1985), and there are largely unstudied samples in various collections (e.g., Natural History Museum, London; Hunterian Museum, Glasgow) (Hunt et al., 2007, 2012b). The Natural History Museum also has a collection from the Purbeck Limestone Formation and Oxford Clay Formation of England, which are largely unstudied (Hunt et al., 2007, 2012b). Late Jurassic (and Cretaceous) lithographic limestones in Europe contain coprolites (e.g., Hunt et al., 2012a, b), but the only detailed study of them is by Schweigert and Dietl (2012).

CONSUMULITES

Vertebrate consumulites are most commonly preserved in aquatic organisms, because taphonomic factors (e.g., water chemistry, deposition rates) in aqueous environments increase the likelihood of the preservation of complete carcasses relative to subaerial conditions (Hunt et al., 2012a). Some of the most impressive consumulites are found in skeletons of marine reptiles, for which the Jurassic is notable (e.g., Pollard, 1968; Hunt et al., 2012a). There are extensive samples of Jurassic ichthyosaur and plesiosaur skeletons, notably from Germany and the UK, which include consumulites that are in need of detailed study.

DISCUSSION

The Jurassic bromalite record of the western United States is quite limited, especially in contrast to the Triassic and Cretaceous records of the same region (e.g., Suazo et al., 2012; Hunt et al., 2013). Some of the notable factors contributing to this limited record are:

- Early Jurassic red beds are notably less fossiliferous than those of the Triassic (e.g., contrast the fossil record of the Chinle and Glen Canyon groups).
- The Early and Middle Jurassic of the region includes several aeolianites and sabkha-like deposits representing environments that preserve few bromalites.
- The Upper Jurassic Morrison Formation contains abundant vertebrate body fossils and many tracks but very few bromalites, in contrast to the broadly similar fluvial Triassic and Cretaceous strata of the same area, maybe in part due to a lack of collection but principally probably due to adverse taphonomic conditions.

The global bromalite record also appears to be depauperate in the Jurassic, with a few exceptions such as marine shales and lithographic limestones in Europe (e.g., Lower Jurassic of England, Solnhofen). This relative lack of a Jurassic bromalite record may in part be a result of a lack of collection and study rather than of any other factor. However, the relative lack of nonmarine bromalites is clearly influenced by:

- High sea levels in the Liassic.
- Paucity of Middle Jurassic nonmarine vertebrate-bearing units.
- Lack, or lack of recognition of, bromalites in major Upper Jurassic nonmarine vertebrate faunas (e.g., China, Tanzania, Portugal, etc.).

In the Western United States there is clearly a need for more detailed examination of known specimens (e.g., putative Morrison coprolites) and a focus on collecting more examples.

Acknowledgments. We thank Karen Chin for access to collections at the University of Colorado Museum and John Foster, Martin Lockley and Sebastian Dalman for helpful reviews of the manuscript.
REFERENCES

BUCKLAND W., 1829 — On the discovery of a new species of Pterodactyle; and also of the faeces of the Ichthyosaurus; and of a black substance resembling Sepia, or India Ink, in the Lias at Lyme Regis. Proceedings of the Geological Society of London, 1: 96–98.
HAUFF B., 1921 — Untersuchung der Fossilfundstatten in Posidonienschiefere des oberen Lias Württemberg. Palaeontographica, 64: 1–42.
Jurassic vertebrate bromalites of the western United States in the context of the global record

